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ABSTRACT
We consider the problem of finding over-represented arrange-
ments of Secondary Structure Elements (SSEs) in a given
dataset of representative protein structures. While most pa-
pers in the literature study the distribution of geometrical
properties, in particular angles and distances, between pairs
of interacting SSEs, in this paper we focus on the distribu-
tion of angles of all quartets of SSEs and on the extraction of
over-represented angular patterns. We propose a variant of
the Apriori method that obtains over-represented arrange-
ments of quartets of SSEs by combining arrangements of
triplets of SSEs. This specific case will pose the basis for
a natural extension of the problem to any given number of
SSEs. We analyze the results of our method on a dataset of
300 non redundant proteins.

1. INTRODUCTION
The problem of finding recurrent three-dimensional pat-

terns in proteomic data is of biological interest and therefore
has been studied in different contexts and with various tech-
niques [6, 16]. In fact, although the information on the fold
of a protein is already totally contained in its amino acid
sequence, the calculation of the minimal energy among all
the possible conformations is a task which is overwhelming
even for the fastest computer. For this reason, a great deal
of efforts has been spent over the years in order to disclose
hidden rules about the organization of secondary structure
elements [2, 8].

A simplified description of the three-dimensional protein
structure is that of considering it as an arrangement of SSEs.
The possible ways SSEs aggregate in space is someway lim-
ited: all protein structures, till now determined, can be
grouped in a relatively limited number of different folds.
Moreover, it is well known that interacting SSEs show marked
preferences in their reciprocal orientation. For example, in-
teracting β-strands are very often organized in sheets, where
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each strand is disposed in a roughly parallel or antiparallel
orientation with respect to the neighboring ones [3]. Prefer-
ences between interacting α-helices have been also studied
extensively and general rules extracted [4, 7, 15]. Neverthe-
less, it has been shown that the expected uniform random
distribution of angles is actually biased toward angles near
90o[1]. When this geometric bias was taken into account,
the observed peaks in the helix-helix angle distribution were
significantly attenuated: correcting for statistical bias, the
true preference for particular packing angles in soluble pro-
teins is not as strong as previously thought.

Moreover, the relative arrangement of non-interacting SSEs
in space is less obvious [11]. In order to analyze their global
disposition, in the past we have conducted a statistical anal-
ysis on the occurrences of triplets of SSEs [10, 17]. We
found that the distribution is far from being random, with
a marked preference for specific angle combinations. This
knowledge could be used to guide the engineering of stable
protein modules or to predict the three-dimensional struc-
ture [13].

The present study extends the previous analysis, taking
into account quartets of SSEs. It presents an analysis of the
distribution of secondary structures within a selected set of
non redundant proteins. It constructs frequent patterns of k
elements (or itemsets of size k) by joining frequent patterns
of size k − 1.

2. PROBLEM DESCRIPTION
Given a data-set of proteins structures, we address the

problem of finding over-represented arrangements of SSEs
in terms of geometrical properties. Most papers in the lit-
erature study the distribution of geometrical properties, in
particular angles, between pairs of interacting SSEs [14, 18].
Here we focus on over-represented configurations consisting
of more than two SSEs and analyze the distribution of angles
of such configurations. Our task is to design a framework to
extract over-represented arrangements of k SSEs, by com-
bining the results obtained with arrangements of k−1 SSEs.
We discuss in details how to obtain over-represented ar-
rangements of four SSEs by using the distribution of triplets
of SSEs instead of generating all quartets of SSEs from the
data set. This specific case will pose the basis for a natural
extension of the problem to any given number of SSEs.

Each protein structure of the dataset is given with the list
of SSEs ordered according to the backbone chain. A line seg-
ment is associated to each SSE. For a β-strand the segment



is the best fit segment of the set of atoms of the strand, for
an α-helix it is the best fit axis. For the purpose of our anal-
ysis, a line segment is assumed to be a unit vector applied in
the origin of a reference system in three-dimensional space.
Thus a protein is a list of m unit vectors (s1, · · · , sm).

An arrangement of SSEs is described in terms of the an-
gles formed by all pairs of corresponding vectors. Let αhk

be the dihedral angle of sh and sk, 0o ≤ αhk ≤ 180o.
A triplet of SSEs (si1, si2, si3), with i1 < i2 < i3, is de-
scribed by three angles α12, α13 and α23 satisfying the tri-
angle inequality. A quartet of SSEs S = (si1, si2, si3, si4),
with i1 < i2 < i3 < i4, gives rise to 6 dihedral angles
Q = (α12, α13, α23, α24, α34, α14). A schematic representa-
tion of the unit vectors derived from a quartet of SSEs can
be found in Figure 1. It is easy to show that, in the gen-
eral case, the six angles are not completely independent.
More precisely, given 5 of the αhk angles, the sixth angle
can take only one of two possible values. The derivation of
such values is omitted for lack of space. Furthermore, when
three out of four segments are mutually orthogonal then one
of the angles formed by the fourth segment with the three
segments is uniquely determined by the other two angles.
Another important question, that will be considered in sec-
tion 4, is whether it is possible to superimpose, by a rigid
transformation, two quartets forming the same angles.
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Figure 1: (a) An example of vector discretization for
a quartet of SSEs. (b) The unit vectors translated
to the origin (into the unit sphere).

The angular values are discretized into uniform intervals,
with every interval represented by an integer. More pre-
cisely, in our work the range 0o − 180o is divided into 10
intervals, and an angle α represented by the integer i such
that i ∗ 18o ≤ α < (i + 1) ∗ 18o. Thus a quartet of SSEs
is represented by 6 integer values each in the range [0,10].
In the following we refer to the discretized angles simply as
angles.

3. DISCOVERY OF OVER-REPRESENTED
PATTERNS

Our approach is similar to the Apriori algorithm used for
data mining applications. Apriori finds frequent associations
of attributes of k elements (or itemsets of size k) by joining
frequent associations of itemsets of size k− 1. Similarly, our
algorithm finds over-represented arrangements of quartets of
segments from over-represented triplets of segments; it does
so by joining over-represented triplets of angles to obtain
over-represented sextuplets of angles.

However, our approach differs substantially from Apriori
in the way the patterns are joined together to obtain pat-
terns of larger size. At the basis of the Apriori mining al-
gorithm is the anti-monotone property that states that all
non empty subsets of a frequent set must also be frequent.
In other words, if an itemset cannot pass the test of being
frequent, then all its supersets will fail the same test.

The anti-monotone property does not hold for the an-
gles formed by sets of segments. Consider a frequent sextu-
ple of angles Q = (α12, α13, α23, α24, α34, α14) and all quar-
tets S of segments with angles Q. Even though Q is fre-
quent, it is possible that triplets that are subsets of Q are
not frequent. This is the case of the triplet of angles T =
(α13, α23, α24) that cannot be formed (in the general case)
by a triplet of segments which is a subset of an element
of S, because the three angles involve all 4 segments of a
single element of S. However, there are four triplets of an-
gles subsets of a frequent sextuple Q that must be frequent.
These are (α12, α13, α23) and (α23, α24, α34), (α13, α14, α34)
and (α12, α14, α24). Indeed, the four triplets are formed by
the four different ways of choosing three segments out of
four. Frequent triplets of angles are extracted by comparing
the observed frequencies of triplets of angles with those of
randomly distributed vectors.

We now describe our mining procedure. We start by giv-
ing an overview of our approach, and then describe each step
in detail.

PROCEDURE: Pattern Discovery

1. Initialization: From the given protein data set generate
the set A of all ordered triplets of angles associated to
ordered triplets of SSEs, sorted according to the order
along the backbone.

2. Build an hash table indexed by the triplets of angles
that stores all triplets of segments.

Derive the 3D histogram of the distribution of the
triplets of A from the hash table. The histogram has
b = 10 bins along each axis, for a total of b3 bins or
cells.

3. Build the distribution of triplets of angles of random
unit vectors and derive the corresponding 3D histogram.

4. Based on the deviation between the histogram of ob-
served triplets of angles and that of random triplets,
determine the subset C ⊂ A of triplets that are over-
represented.

5. Join step: construct candidate sextuples of angles from
triplets of C.

6. Verification step: prune candidate sextuples to find the
over-represented ones.

3.1 Building the Hash Table
We build a four-dimensional hash table with the following

index structure: for a given triplet of vectors, three indexes
are given by the quantized values of the angles of the triplet,
the fourth index depends on the composition of the triplet
in terms of the number and position of helices and strands.
This index, called triplet type, is used when a separate anal-
ysis is requested for helices and strands. The size of the cells
of the table is the same as the binsize for the histograms.



Each cell of the table contains a list of records, one for every
triplet that hashed into it. The following procedure inserts
protein P into the hash table and is a variant of the one
described in [5].

PROCEDURE: Insert Protein
Given protein P , all triplets of secondary structures of P are
examined and for each triplet (pu, pv, pz) with u < v < z the
following steps are executed:

i. Compute the angles (αuv, αvz, αuz) and determine triplet
type.

ii. Access the cell of the hash table at the location in-
dexed by triplet type and by the quantized values of
(αuv, αvz, αuz).

iii. Append to the list of records at that cell a new record
that contains:

• the name of protein P .

• the identifier of each secondary structure element
of the triplet.

The above procedure is repeated for all proteins in the
data set. The construction of the table is computationally
intensive. However, the number of proteins of the dataset
to be inserted is relatively small.

3.2 Generating Random Triplets
The selection of the frequent triplets is the crucial point

of the overall procedure: a wrong selection can produce a
meaningless starting point that can lead to unreliable re-
sults. Thus this step must be carefully designed. We ob-
serve that the distribution of geometric properties of triplets
strongly depends on the features considered. To avoid the
bias due to the features considered, we compute the null
distribution of such properties.

The random generation of a triplet of angles is decom-
posed into the generation of three versors. A versor is a
vector of unit length that we assume to be in the semi-
sphere identified by a positive value of the z coordinate. A
versor is now uniquely determined by two parameters: its
coordinate z ∈ [0, 1], and its Azimuth β ∈ [0, 2π]. We have
already observed that the triangular inequality holds for any
three angles α, β, γ of a triplet of segments; it translates
into the following three constraints: α + β ≥ γ, α + γ ≥ β,
β + γ ≥ α. This implies that not all cells of the hash table
can be populated by triplets of segments; in other words,
there are cells that will remain empty. Furthermore, some
cells can only be partially populated. Thus when deciding
which cells correspond to most frequent triplets of angles,
we have to take into account the above consideration and
normalize by the volume of the region of the cell that can in
fact be populated. This region is determined by considering
that the above three constraints correspond to the equa-
tions of the three boundary planes α + β = γ, α + γ = β,
β + γ = α delimiting the populated area in 3D space. By
intersecting each cell of the 3D array with the three bound-
ary planes we find out which region, if any, has to be ex-
cluded and consequently compute the volume Vc of the pop-
ulated region. Thus the frequency of a cell (α, β, γ) will be:
Count(α, β, γ)/Vc(α, β, γ).

Given a data set of n real proteins to analyze, we generate
the distribution of angles of n sets of random vectors, each

corresponding to a protein of the dataset and containing the
same number of SSEs of such protein.

The generation of the ensemble of random vectors is re-
peated several times and, at the end, each cell of the hash
table has the average of the values of the cell over all random
generations. This results in a 3D histogram representing all
triplets of angles, where each triplet has attached a mean and
a variance. For the selection of over-represented angles we
experimented with different selection policies. To preserve a
reasonable number of candidates we select the configurations
of angles that have a frequency above the mean.

3.3 Join and Verification Steps
The operation join merges four frequent triplets (α12, α13,

α23) and (α23, α24, α34), (α13, α14, α34) and (α12, α14, α24)
into the candidate sextuple (α12, α13, α23, α24, α34, α14). The
four triplets to be merged are such that the last angle of the
first triplet is the same as the first angle of the second; the
second element of the first triplet is the same as the first
element of the third triplet, and so on. Recall that all an-
gles are discretized. Furthermore, note that two triplets may
coincide.

Once a candidate sextuple has been identified in step 5,
the verification procedure checks that there is in fact a sta-
tistically significant number of quartets of vectors with that
sextuple of angles. This number will provide the actual fre-
quency of the sextuple of angles. The verification step is
needed because some triplets of segments contributing to
the count of frequent triplets of angles cannot be joined
into quartets of segments. For instance, the two triplets
might be from different proteins. Two triplets of segments
(s1, s2, s3) and (t1, t2, t3) associated to SSEs of the same pro-
tein and forming angles (α12, α13, α23) and (α23, α24, α34),
respectively, can be joined into a quartet of segments with
angles (α12, α13, α23, α24, α34, α14) if (s2 = t1 and s3 = t2),
i.e. the last two segments of the first triples coincide with
the first two of the second triples. Two such triplets of seg-
ments are called “consistent” and they contribute one to the
frequency count of the associated sextuple.

To efficiently search for consistent triplets, we use the hash
table built in step 2 containing the triplets of segments of
all proteins. The frequency or count of a candidate sex-
tuple (α12, α13, α23, α24, α34, α14) is determined as follows.
Access the hash table at the cells E1 and E2 indexed by
(α12, α13, α23) and by (α23, α24, α34) respectively. For each
triplet (s1, s2, s3) in E1 with associated protein name P
search in E2 for all triplets (s2, s3, t), with any arbitrary t,
of the same protein P . For each such triplet increment the
count if the last angle α14 is compatible with the candidate
sextuple under examination.

4. SPATIAL ARRANGEMENTS OF VECTORS
WITH THE SAME ANGULAR PATTERN

It is interesting to determine whether two sets of vectors
with the same angular pattern can be superimposed by a 3D
rigid transformation, or whether the spatial conformations
of the two sets of vectors differ in their 3D shape. Protein
structure comparison algorithms that align SSEs also use a
shape similarity measure based on the rigid superposition of
the structures [21].

We define equivalent two sets of vectors that can be super-
imposed by a rigid transformation. We first look at the case



of triplets of vectors (a, b, c) and their angles (α, β, γ). We
recall that the unit vectors are applied into the origin O of
a coordinate system without considering the actual location
of the SSE in 3D space. It is easy to see that there are two
distinct triplets of vectors (a, b, c) and (a, b, c′), where c and
c′ are non parallel vectors, forming a given triplet of angles
(α, β, γ). For example (see Figure 2), consider four vectors
forming a regular pyramid with vertex in 0; label two oppo-
site vectors of the pyramid a and b and the other two c and
c′. The two triplets of vectors (a, b, c) and (a, b, c′) have the
same angles but are non equivalent since they are one the
mirror of the other.

a

c

b

c’

Figure 2: An example of two triplets, (a, b, c) and
(a, b, c′), with the same pairwise angles, one the mir-
ror of the other.

Perhaps more convincing is the following proof. All vec-
tors forming a given angle δ with a given vector v are rays of
the cone with vertex in O and forming δ angle with v. Given
two vectors a and b forming angle α, a third vector forming
angles β and γ with a and b, respectively, is at the intersec-
tion of two cones. Two cones intersect at either one or two
lines. In the first case, the only possible triplet consists of
vectors lying on the same plane (α + β = γ); in the latter
there are two non parallel vectors c and c′ corresponding to
two distinct triplets.

In conclusion, a triplet of angles (α, β, γ) corresponds to
two spatial arrangements of unit vectors (a, b, c) and (a, b, c′)
that are one the mirror of the other; equivalently, there
exists a transformation with determinant -1 mapping one
triplet of vectors into the other. Loosely speaking, although
two triplets of vectors cannot be superimposed by a rotation
(with determinant 1), they correspond to a similar configu-
ration in terms of angles.

If we extend this argument to quartets of vectors, the
number of non equivalent arrangements doubles. Consider
a sextuple of angles (α12, α13, α23, α24, α34, α14). To con-
struct all non equivalent quartets of vectors corresponding
to it, we follow a build-up approach. From the first three
angles (α12, α13, α23) we construct either one triplet of vec-
tors (a, b, c) or two (a, b, c) and (a, b, c′). Then, we derive
the last vector d. There are four possible cases:

1. If α12 +α23 = α13 and α23 +α34 = α24, then there is a
single triplet (a, b, c) and a single triplet (b, c, d). Thus,
there exists a unique arrangement of four vectors.

2. If α12 + α23 = α13 but α23 + α34 < α24, then two dis-
tinct arrangements are possible, (a, b, c, d) and (a, b, c, d′).

3. Otherwise, if α23 = α34 then four different arrange-
ments are possible, with three distinct vectors as last
component of the quartet: (a, b, c, d), (a, b, c, d′),
(a, b, c′, d′) and (a, b, c′, d′′).

4. In all other cases, the following four arrangements are
possible: (a, b, c, d), (a, b, c, d′),(a, b, c′, d′′) and
(a, b, c′, d′′′).

5. RESULTS AND DISCUSSION
We selected a set of 300 non-redundant proteins from dif-

ferent families and computed the set of all triplets of SSEs
and their associated linear segments. To include only sig-
nificant SSEs, we required helices to have at least seven
residues, corresponding to two complete turns of a regular
helix. Strands were required to have at least three residues
for proper fitting of a vector to the Cα coordinates. Sec-
ondary structures are represented by the best-fit line seg-
ments. A Singular-Value Decomposition (SVD) routine is
used to associate a segment to each α-helix and β-strand
[9]. Using this dataset we constructed the hash table of
triplets of angles and compared it with the random distri-
bution to determine the cells that deviate significantly from
the corresponding cells for the random data. The hash table
contains 520 non empty cells (containing a total of 398,853
triplets of vectors), of which 242 were selected as frequent
(corresponding to 189,270 triplets). The histogram of the
triplets of angles selected as frequents is shown in Figure 3.
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Figure 3: 3D histogram of the distribution of se-
lected angles. Each axis represents an angle and the
frequency of each triplet follows the color coding.

5.1 Analyzing Over-represented Patterns of An-
gles

The pattern discovery process finds a set of over-represented
arrangements of four SSEs. Each arrangement is described
by six ordered angles, i.e. an angle corresponds to a specific
pair of SSEs which is identified by the sequential order of
SSEs along the primary structure. Thus two arrangements
forming the same six angles, but in a different order, cor-
respond to two different patterns, even though they can be
considered geometrically equivalent. We address this issue



by merging together patterns composed by the same angles
and ignoring the relative order of angles.

By merging patterns, the discovery procedure selects a set
of 785 over-represented patterns, formed by 485,021 quartets
of segments, out of 2,262 patterns and more than 3,000,000
quartets obtained by the exhaustive search. The top pattern
is composed by the discretized angles (1, 2, 3, 7, 8, 9), corre-
sponding to angles in the ranges (18o− 36o, 36o− 54o, 54o−
72o, 126o − 144o, 144o − 162o, 162o − 180o), and has a fre-
quency of 6,439, the top second has similar angles, (1,2,7,8,
8,9), and a smaller frequency of 5,780. The frequency count
drops dramatically after the first few patterns. It is interest-
ing to notice that the top 11 angular patterns (out of 785)
cover about 10% of the quartets; coverage of the quartets of
about 20% is obtained by 29 patterns and that of 50% by
122 patterns.

The overall discovery procedure is relatively fast; it takes
approximately 20 minutes on a standard PC (AMD Athon
2.6 GHz). On the same machine, the exhaustive generation
of all possible quartets of SSEs takes more than 3 days.

We observed that over-represented patterns of angles tend
to form clusters in the six-dimensional space correspond-
ing to six angles. Thus, we further analyzed the set of
over-represented patterns by clustering them using as dis-
tance the Euclidean distance between angular patterns in
six-dimensional space.

We experimented with different clustering algorithms and
different numbers of clusters and, based on the measure of
silhouette [12], we selected the k-means algorithm with 3
clusters. Clusters 1 and 3 contain, respectively, the first and
second most frequent pattern. Cluster 2 contains the config-
uration of angles (0, 1, 1, 2, 2, 3) that appears at position 16
in the overall ranking of patterns. The top patterns for each
cluster are shown in Figure 4. In Figure 5 the cluster sepa-
ration is highlighted by plotting the distribution of distances
between the centroids of each cluster and the elements of all
3 clusters.

In all clusters the angles vary from 0o to 72o and from 126o

to 180o, while values between 80o and 100o are completely
absent. This is not surprising because the distribution is
biased by the presence of many interacting SSEs. For ex-
ample, in parallel and anti-parallel β-sheets, each β-strand
typically forms a small angle with the two nearby strands.
The same is true for interacting α-helices, that pack forming
small angles; furthermore, they are hardly found perpendic-
ular to each other [19, 20]. Cluster 2 is the smallest one,
with 32,988 elements; it contains SSEs characterized by the
same orientation: in fact, the angles between all pairs of
SSEs are in the range 0o to 72o. The other two clusters
are more densely populated; cluster 1 has 221,879 elements
and cluster 3 has 230,154 elements. In these two clusters
the SSEs are arranged with three SSEs with the same ori-
entation and the other one with the opposite (cluster 1) or
with two SSEs in the same orientation and the other two in
the opposite orientation. The smaller number of elements
in cluster 2 reflects the tendency of SSEs that are close in
space to form anti-parallel configurations.

If we restrict the analysis to homogenous configurations,
i.e. those containing four strands or four helices, we obtain
similar results for the clusters, but with a preference for
anti-parallel pairs, corresponding to the top ranked pattern
of angles (1, 2, 7, 8, 8, 9).

The over-represented patterns considered so far have in-

α0 α1 α2 α3 α4 α5 Frequency
1 2 3 7 8 9 6,439
1 2 3 7 8 8 5,586
1 1 2 7 8 9 4,657
1 2 3 6 8 9 4,085
1 2 3 7 7 8 3,728
1 1 2 6 7 8 3,648
1 2 2 7 8 9 3,401
1 2 3 6 7 9 2,958
1 1 2 8 8 9 2,833
1 1 2 7 8 8 2,494

Cluster 1

α0 α1 α2 α3 α4 α5 Frequency
0 1 1 2 2 3 2,623
1 1 1 2 2 3 2,162
0 1 1 1 2 2 2,123
0 1 1 2 3 3 1,667
0 1 1 2 2 2 1,445
0 1 1 1 1 2 1,311
0 1 1 1 2 3 1,246
0 1 2 2 3 3 1,178
1 1 1 2 3 3 1,039
1 1 2 2 2 3 1,010

Cluster 2

α0 α1 α2 α3 α4 α5 Frequency
1 2 7 8 8 9 5,780
1 3 6 7 8 9 5,100
1 2 6 7 8 9 4,437
2 3 6 7 8 9 3,884
1 3 7 7 8 8 3,831
1 2 7 7 8 9 3,637
1 1 7 8 8 9 2,916
1 3 6 7 8 8 2,572
1 3 7 7 8 9 2,544
0 3 7 7 8 8 2,525

Cluster 3

Figure 4: The ten top frequent patterns for the three
clusters.

cluded the SSEs of the selected set of proteins, regardless
of their distances. We now consider homogenous patterns
of SSEs that are close in space; we define two SSEs to be
in contact if the distance between the mid-points of their
associated vectors is less than a given threshold (18 in our
analysis). Figure 6 shows the number of pairs of vectors in
contact for the top configuration. It is interesting to notice
that in all cases at least one pair of vectors is in contact,
and very often three or more vectors are in contact. No-
tice that the use of the same threshold penalizes helices,
because of their bigger steric hindrance [18]. Nevertheless,
more than 65% of the elements have at least two SSEs in
contact. To better appreciate the proximity of these over-
represented configurations, in Figure 7 we show different ex-
amples of four strands, with angles (1, 2, 7, 8, 8, 9). In all
these examples the four strands are in contact. Although
they display different arrangements, their pairwise angles
are similar, thus they fall into the same cell of the hash ta-
ble. These patterns of angles are obtained with SSEs from
the same β-sheet (Figure 7(c)), as well as from different β-
sheets (Figure 7(a) and (b)). The fact that most, but not all,



(a) (b)
Distribution of distances from the centroid of Cluster 1. Distribution of distances from the centroid of Cluster 2.

(c)
Distribution of distances from the centroid Cluster 3.

Figure 5: Distance distributions between centroids of clusters.

(a) Number of pairs in contact in quartets of strands. (b) Number of pairs in contact in quartets of helixes.

Figure 6: Number of pairs of segments in contact.



(a) (b) (c)

Figure 7: Three examples of the pattern of angles (1,2,7,8,8,9) composed by all strands: (a) Protein 1hpl,
SSE: 16-17-18-20; (b) Protein 1acc, SSE: 0-1-2-3; (c) Protein 1aor, SSE: 4-6-8-12.

SSEs are close in space consolidates the idea that arrange-
ments of angles are influenced by atomic interactions, either
directly or through other SSEs that do not explicitly belong
to the quartet. Finally, as illustrated in Figure 7, secondary
structure elements belonging to the same quartet do not
necessarily correspond to similar structures, i.e. structures
that can be superimposed by rotation and translation. For
this reason it is impossible to associate a three-dimensional
motif, or a group of motifs, to the most frequent quartets
described above. The biological significance of the distribu-
tions observed needs a deepener investigation.

6. CONCLUSIONS
We have proposed an efficient algorithm to extract over-

represented quartets of SSEs, that avoids the exhaustive
generation of patterns. We have shown that a careful anal-
ysis of the angular bias of random vectors is essential in
the determination of over-represented arrangements of sec-
ondary structures. This study provides a generalized frame-
work that can be easily extended to patterns composed by
more than four SSEs. The knowledge of over-represented
patterns could be used to guide the engineering of stable
protein modules or to predict their three-dimensional struc-
tures. Other applications can be designed by replacing the
null distribution with that of a specific family of proteins.
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